

Welcome to autosig’s documentation!

Contents:

	Introduction to autosig
	Motivation

	Features

	Credits

	Installation
	Stable release

	From sources

	Usage

	autosig
	autosig package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.10.0 (2020-7-1)

	0.9.2 (2019-10-1)

	0.8.2 (2019-09-18)

	0.8.0 (2019-08-27)

	0.7.0 (2018-09-25)

	0.6.0 (2018-09-24)

	0.5.0 (2018-09-21)

	0.4.1 (2018-09-05)

	0.3.1 (2018-08-30)

	0.3.0 (2018-08-30)

	0.2.3 (2018-08-28)

	0.2.2 (2018-08-27)

	0.1.0 (2018-04-25)

Indices and tables

	Index

	Module Index

	Search Page

Introduction to autosig

[image: _images/autosig.svg]
 [https://pypi.python.org/pypi/autosig][image: _images/autosig1.svg]
 [https://travis-ci.org/piccolbo/autosig][image: _images/badge.svg]
 [https://codecov.io/gh/piccolbo/autosig][image: Documentation Status]
 [https://autosig.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/piccolbo/autosig/][image: Maintainability]
 [https://codeclimate.com/github/piccolbo/autosig/maintainability]Go straight to the documentation [https://autosig.readthedocs.io/en/latest/]. Install with pip install autosig. Python 3 only.

Motivation

When I look at a great API I always observe a great level of consistency: similarly named and ordered arguments at a syntactic level; similar defaults, range of allowable values etc. on the semantic side. When looking at the code, one doesn’t see these regularities represented very explicitly.

Imagine we are starting to develop a library with three entry points, map, reduce and filter:

from collections import Iterable

def map(function, iterable):
 assert callable(function)
 assert isinstance(iterable, Iterable)
 return (function(x) for x in iterable)

def reduce(function, iterable):
 total = next(iterable)
 for x in iterable:
 total = function(total, x)
 return total

def filter(iterable, fun):
 if not isinstance(iterable, Iterable):
 iterable = [iterable]
 if isinstance(fun, set):
 fun = lambda x: x in fun
 return (x for x in iterable if fun(x))

But this is hardly well crafted. The order and naming of arguments isn’t consistent. One function checks its argument right away. The next doesn’t. The third attempts certain conversions to try and work with arguments that are not iterables or functions. There are reasons to build strict or tolerant APIs, but it’s unlikely that mixing the two within the same API is a good idea, unless it’s done deliberately (for instance offering a strict and tolerant version of every function). It wouldn’t be difficult to fix these problems in this small API but we would end up with duplicated logic that we need to keep aligned for the foreseeable future. Let’s do it instead the autosig way:

from autosig import param, Signature, autosig, check
from collections import Iterable

def to_callable(x):
 return (lambda y: y in x) if isinstance(x, set) else x

def to_iterable(x):
 return x if isinstance(x, Iterable) else [x]

API_signature = Signature(
 function=param(converter=to_callable, validator=callable),
 iterable=param(converter=to_iterable, validator=Iterable))

@autosig(API_signature)
def map(function, iterable):
 return (function(x) for x in iterable)

@autosig(API_signature)
def reduce(function, iterable):
 total = next(iterable)
 for x in iterable:
 total = function(total, x)
 return total

@autosig(API_signature)
def filter(function, iterable):
 return (x for x in iterable if function(x))

Let’s go through it step by step. First we defined 2 simple conversion
functions. This is a good first step independent of autosig. Next we create
a signature object, with two parameters. These are intialized with objects that
define the checking and conversion that need to be performed on those
parameters, independent of which function is going to use that signature.
A type works as a validator, as does any callable that returns True when a value is valid, returns False or raises an exception otherwise. Finally, we repeat
the definition of our three API function, attaching the signature just defined
with a decorator and then skipping all the checking and conversion logic and
going straight to the meat of the function!

At the cost of a little code we have gained a lot:

	Explicit definition of the desired API signature, in a single place — DRY principle;

	association of that signature with API functions, checked at load time — no room for error;

	uniform application of conversion and validation logic without repeating it;

autosig is the pro tool for the API designer! If you want to take a look at a real package that uses autosig, check out altair_recipes [https://github.com/piccolbo/altair_recipes].

Features

	Define reusable parameters with defaults, conversion and validation logic, documentation, preferred position in the signature and whether keyword-only.

	Define reusable return values with conversion and validation logic and documentation.

	Define reusable signatures as ordered maps from names to parameters with optional return value definition.

	Combine signatures to create complex ones on top of simple ones.

	Decorate functions and methods with their signatures. Enforced at load time. Conversion and validation logic executed at call time.

	Not hot about signatures? You can just use parameters as in:

@autosig
def reduce(function = param(...), iterable=param(...)):

for more free-form APIs.

	Open source (BSD license)

	Extensive property-based testing, excellent coverage

Credits

This package is heavily based on attrs [https://github.com/python-attrs/attrs]. While that may change in the future, for now it must be said this is a thin layer over that, with a bit of reflection sprinkled over. It is, I suppose, a quite original direction to take attrs into.

Installation

Stable release

To install autosig, run this command in your terminal:

$ pip install autosig

This is the preferred method to install autosig, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for autosig can be downloaded from the Github repo [https://github.com/piccolbo/autosig].

You can either clone the public repository:

$ git clone git://github.com/piccolbo/autosig

Or download the tarball [https://github.com/piccolbo/autosig/tarball/master]:

$ curl -OL https://github.com/piccolbo/autosig/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use autosig in a project:

from autosig import *

To define a signature:

api_sig = Signature(x = param(default=0, converter=int))

To associate that signature with a function:

@autosig(api_sig)
def entry_point(x=0)
 # signature executed here, in this case int conversion
 return x

The same works with methods, just leave the self argument out:

class C:
 @autosig(api_sig)
 def entry_point(self, x=0)
 # signature executed here, in this case int conversion
 return x

Simple signatures can be combined to for more complex ones:

sig = Signature(x=param())+Signature(y=param())

Signatures can now include return values:

api_sig = Signature(Retval(validator=int), x = param(default=0, converter=int))

You can skip signatures altogehter and just capture commonalities between arguments with the argumentless form of the decorator:

x_arg = param(...)
y_arg = param(...)

@autosig
def entry_point(x = x_arg, y = y_arg):
 return x + y

param allows you to define a number of properties or behaviours of function arguments: validator, converter, docstring, default value, position,

autosig

	autosig package

autosig package

Top-level package for autosig.

	
class autosig.Signature(*params, **kwparams)

	Bases: object

Class to represent signatures.

	Parameters

	
	*params ((str, attr.Attribute)) – Optional first non-pair argument describes the return value.
Each following argument is a pair with the name of an argument in the signature and a description of it generated with a call to param.

	**kwparams (attr.Attribute) – Each keyword argument becomes an argument named after the key in the signature of a function and must be initialized with a param call. Requires python >=3.6. If both *param and **params are provided the first will be concatenated with items of the second, in this order.

	Returns

	The object created.

	Return type

	Signature

	
set_late_init(init)

	Set a function to be called immediately after all arguments have been initialized.

Use this function to perform initialization logic that involves multiple arguments in the signature.

	Parameters

	init (FunctionType) – The init function is called after the initialization of all arguments in the signature but before the execution of the body of a function with that signature and is passed as an argument a dictionary with all arguments of the function. Returns None and acts exclusively by side effects.

	Returns

	Returns self.

	Return type

	Signature

	
autosig.autosig(sig_or_f)

	Decorate functions or methods to attach signatures.

Use with (W) or without (WO) an argument:

@autosig(Signature(a = param(), b=param()))
def fun(a, b)

or, equivlently (WO):

@autosig
def fun(a=param(), b=param())

Do not include the self argument in the signature when decorating
methods

	Parameters

	sig_or_f (Signature or function) – An instance of class Signature (W) or a function or method (WO) whose
arguments are intialized with a call to param.

	Returns

	A decorator (W) or an already decorated function (WO)
The decorated function, will intialize, convert, and
validate its arguments and will include argument docstrings
in its docstring.

	Return type

	function

	
autosig.param(default=NOTHING, validator=<function always_valid>, converter=<function identity>, docstring='', position=-1, kw_only=False)

	Define parameters in a signature class.

	Parameters

	
	default (Any) – The default value for the parameter (defaults to no default, that is, mandatory).

	validator (callable or type) – If a callable, it takes the actual parameter as an argument, raising an exception or returning False if invalid; returning True otherwise. If a type, the actual parameter must be instance of that type.

	converter (callable) – The callable is executed with the parameter as an argument and its value assigned to the parameter itself. Useful for type conversions, but not only (e.g. truncate range of parameter).

	docstring (string) – The docstring fragment for this parameter.

	position (int) – Desired position of the param in the signature. Negative values start from the end.

	kw_only (bool) – Whether to make this parameter keyword-only.

	Returns

	Object describing all the properties of the parameter. Can be reused in multiple signature definitions to enforce consistency.

	Return type

	attr.Attribute

	
class autosig.Retval(validator=<function always_valid>, converter=<function identity>, docstring='')

	Bases: object

Define return values in a Signature class.

	Parameters

	
	validator (callable or type) – If a callable, it takes the return value as an argument, raising an exception or returning False if invalid; returning True otherwise. If a type, the return value must be an instance of that type.

	converter (callable) – The callable is executed with the return value as an argument and its return value is returned instead. Useful to enforce properties of return values, e.g. type, but not only.

	docstring (string) – The content for the docstring Returns section.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/piccolbo/autosig/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

autosig could always use more documentation, whether as part of the
official autosig docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/piccolbo/autosig/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up autosig for local development.

	Fork the autosig repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/autosig.git

	Install your local copy into a virtualenv. This is how you set up your fork for local development:

$ curl -sSL https://raw.githubusercontent.com/sdispater/poetry/master/get-poetry.py | python #if needed, or other method to install poetry
$ cd autosig
$ poetry install

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 autosig tests
$ make test
$ tox # in the works

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/piccolbo/autosig/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_autosig

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Antonio Piccolboni <autosig@piccolboni.info>

Contributors

None yet. Why not be the first?

History

0.10.0 (2020-7-1)

	Support for return values in signatures

0.9.2 (2019-10-1)

	Single argument validators.

	Late init feature for signatures.

0.8.2 (2019-09-18)

	Switch from pipenv to poetry for development

0.8.0 (2019-08-27)

	autosig can decorate methods (exclude self from signature)

0.7.0 (2018-09-25)

	Argumentless autosig decorator for the use case of reusable parameter definitions but no reusable signatures.

0.6.0 (2018-09-24)

	Added check the quick validator generator. check(int) checks an argument is integer. check(\lambda x: x>0) checks an argument is positive. Behind the scenes it creates uses an assert statement which hopefully prints a useful message.

0.5.0 (2018-09-21)

	All new API, many breaking changes (sorry)

	signature decorator is gone

	create signatures directly withe the Signature constructor (it is no longer a base class to inherit from)

	do not use inheritance to define new signatures form old ones. It was a dead end as far as controlling the order of arguments. Use instead the + operator to combine two signatures, analogous to inheriting from one while adding new attributes.

	the new approach gives control over order of arguments, allows to mix mandatory and default arguments in one signature yet allow to reuse it (“stick” new mandatory arguments in between the arguments of the old signature)

0.4.1 (2018-09-05)

	Close abstraction holes revealing dependency on attr (which is gratefully acknowledged, but could be confusing).

0.3.1 (2018-08-30)

	Improved docstring generation

0.3.0 (2018-08-30)

	Compose docstring from param docstrings

0.2.3 (2018-08-28)

	Better and passing tests.

0.2.2 (2018-08-27)

	More stringent enforcement of signatures including defaults. Fixed build.

0.1.0 (2018-04-25)

	First release on PyPI.

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 autosig	

Index

 A
 | P
 | R
 | S

A

 	
 	autosig (module)

 	
 	autosig() (in module autosig)

P

 	
 	param() (in module autosig)

R

 	
 	Retval (class in autosig)

S

 	
 	set_late_init() (autosig.Signature method)

 	
 	Signature (class in autosig)

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to autosig’s documentation!

 		
 Introduction to autosig

 		
 Motivation

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 autosig

 		
 autosig package

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.10.0 (2020-7-1)

 		
 0.9.2 (2019-10-1)

 		
 0.8.2 (2019-09-18)

 		
 0.8.0 (2019-08-27)

 		
 0.7.0 (2018-09-25)

 		
 0.6.0 (2018-09-24)

 		
 0.5.0 (2018-09-21)

 		
 0.4.1 (2018-09-05)

 		
 0.3.1 (2018-08-30)

 		
 0.3.0 (2018-08-30)

 		
 0.2.3 (2018-08-28)

 		
 0.2.2 (2018-08-27)

 		
 0.1.0 (2018-04-25)

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

